
International Journal of Academic Research in Computer Engineering

Print ISSN:2476-7638 and Online ISSN: 2538-2411
Vol. 1, No. 2, Pages. 25-32, November 2016

25

International Journal of Academic Research in

Computer Engineering

Volume 1, Number 2, Pages 25-32, November 2016

www.ijarce.org

IJARCE

 Multi-Objective Test Case Prioritization Techniques: A Brief Review

Batool Abadi Khasragi1*

1. Department of Computer Engineering, Islamic Azad University Osku Branch, Osku, Iran.

Receive Date 2016.08.19; Accepted Date: 2016.10.25; Published Date: 2016.11.15

*Corresponding Author: B.A.Khasragi (batool.abadi@gmail.com)

Abstract

Software testing is considered one of the most important stages in the software development life cycle aiming

to detect all software faults including different methods and approaches such as regression test method. When

new alterations or features are added to software, the regression test examine the system to ensure that no

software operation has been affected by new modification. Test case prioritization is an approach for

organizing test cases with a means to minimize time consumption, cost, and efforts, and to provide faster fault

detection. Multiple criteria-based prioritization techniques have the potential of the better improvement and

enhancement of the effects of regression test than other techniques applying single criteria. In this paper, an

overview of regression test and prioritization will be presented along with an introduction to multi-objective

techniques used in prioritizing. Furthermore, a comparison will be made between single- and multiple-

criteria-based prioritization methods.

Keywords: Test Case Prioritization, Test Suite, Software Testing.

1. Introduction

Software testing is considered one of the main and

costliest stages in the software development life

cycle. This procedure occurs in all stages of

software development life cycle (SDLC) including

the requirements stages through the management

and maintenance stages of software. Software

testing can be defined as “the process of executing

(running) programs in order to find faults”. This

activity, which is considered a validation and

verification procedure, is the process of evaluating

software distinguishing given and expected input

so that software features can be evaluated.

Software testing is an important component in

software quality assurance to the extent that many

organizations spend 40% of their resources on

testing procedures. A software changes frequently

during development and maintenance. These

changes can be caused through adding new

features, correcting faults, and improving system

performance. Changes made to software’s code can

have dire consequences on software components

causing the system to fail. Therefore, it is necessary

to ensure that adding new features or components

to a software or making changes in the software

toward correcting and ensuring software

component stability does not result in any negative

outcomes. Although it may seem that executing

and testing all test components is a good way to

ensure component compatibility, considering the

overall time and costs of the problem, it is not

practically possible, though theoretically it works

quite well. In [1] stated that a test suite for software

with 20000 lines of code requires 7 weeks to

complete its execution. However, different

techniques are used in software testing including

regression test. The purpose of this test is to

validate a modified software. This test ensures that

modified components do not affect the quality of

other software components. According to

Rothermel et. al. [2] “test suites can reach large

http://www.ijarce.org/

B.A. Khasragi / International Journal of Academic Research in Computer Engineering

26

sizes so that executing each test case with each

modification in the source code can result in major

costs”. As a software develops, the need to perform

regression tests increases, and new test cases are

generated and added to the test suite. Re-running

test cases in regression tests for modified

components of a system requires high amounts of

time and costs. This calls for different methods of

regression tests. Test case prioritization is one of

the operations of a regression test. This procedure

is necessary for multiple test cases, even when lines

of code are less than millions. Apart from the time

required for running test cases, other operations

also require resources. Such operations may

include test environment preparation, test result

documents, and evaluation of test procedures in

order to improve software procedure. Due to this,

researches have recommended the use of the

following techniques for more efficient running of

regression tests [3]:

1.1. Regression Test

Regression test is applied in maintenance stage to

the modified components of a software. Regression

test executes all former successful tests taken from

the software so that it can ensure that the software

has not failed randomly in previous runs.

Therefore, in order to ensure that all previous

capabilities are still compatible, previous tests are

performed for newer versions before the new

version of the software is published. This test can

be performed for all or none of the previous levels.

The test also focuses on post-modification re-

testing. In general, the purpose of regression test is

to identify side effects (unexpected behaviors) in a

new version. Regression test is not a test phase;

rather it is a testing technique that can be applied in

different test phases. Test cases of a specific stage

are sometimes in the form of a series of stages for

testing the correct operation and features of an

application. Rerunning all test cases in an

application is impractical, time consuming with

high costs and needs for resources. There are

different techniques for reducing the complexity of

regression testing. Regression tests are usually

performed for system content, acceptance test, and

when a program undergoing a testing procedure

has a significant need for cooperating with other

programs (such as integration tests). Regression

testing is also used in black box testing techniques

in order to test high-level requirements of the

program being tested without considering the

details regarding implementation. Rothermel et al.

in [2] stated that there are three methods for

reducing time and costs of regression tests

including regression test selection, set

minimization test, and test case prioritization

techniques. These techniques gather information

from the main program, the modified program, and

the test suite. In test case prioritization, test cases

are assembled according to specific criteria. The

test cases with the highest priority are then

executed to reach a certain operational goal

(objective). In test suite reduction or minimization,

redundant test cases are removed from the test suite

in the course of time and are transformed into a

smaller set of test cases. Test suite reduction

techniques reduce the cost of regression testing

through minimizing test suites while maintaining

the coverage of the primary test suite according to

certain coverage criteria. In regression test

selection, a sub-suite of test cases is selected from

the original and larger test suite. In other words, a

subset of test cases that can identify faults in the

altered system is selected.

1.2. Test Case Prioritization

The issue of test case prioritization was first

presented in 1997 by Wong et al. in [4]. This

technique assigns a priority to each test case. The

priorities are assigned according to certain criteria,

and test cases with the highest priority are executed

first. The main purpose of test case prioritization is

to speed up fault detection rate in regression

testing. The technique also tries to meet operational

objectives such as fault detection rate, program

code coverage rate, and amount of increased

reliability of the system. This technique also has

the advantage of not removing test cases from the

test suite. The solution space for the prioritization

problem is extremely large. For example, a suite

consisting of 20 test cases includes 20! =

2,432,902,008,176,640,000 different arrangements

for test cases. No algorithm can provide an optimal

solution for such a large solution space; however,

it is possible to develop very useful algorithms such

as a genetic algorithm. Many authors have shown

methods for improving regression test

prioritization techniques [2]. Rothermel et al. in [5]

have defined the prioritization problem as Equation

(1).

(∀𝑇")(𝑇" ∈ 𝑃𝑇)(𝑇" ≠ 𝑇′)[𝑓(𝑇") ≥ 𝑓(𝑇")] (1)

A test suite T along with a test set PT containing

permutations of the test suite and a function f

relating PT to real numbers.

Test case prioritization is performed to execute test

cases in an ordered and regular fashion so as to save

costs and time.

B.A. Khasragi / International Journal of Academic Research in Computer Engineering

27

While decreasing test suite and regression test

selection causes a reduction in the number of test

cases, test case prioritization has no effect on the

number of test cases. When test cases are decreased

using test suite reduction and regression test

selection, a few faults may occur due to loss of test

cases. Therefore, it seems that test case

prioritization is a more reliable and efficient

approach compared to other methods.

The overall structure of the paper organized as

follows: In the Section 2, test case prioritization

techniques are explained. At the Section 3,

comparison of single-criteria and multi-criteria will

be described and finally in the Section 4,

conclusion will be explained.

2. Test Case Prioritization Techniques

Please Test case prioritization techniques using

two features [6]; test cost and fault severity. The

cost of a test case can be computed according to test

execution, launching, and test validation. The fault

severity of each of the two methods regarding time

required for locating faults and correcting them and

impact of failures due to faults can be measured

through this approach. The performance of the

proposed method is less than that of prioritization

approaches based on genetic algorithm.

A value-driven approach for system-level test case

prioritization was proposed by Hema Srikanth et al.

in [7]. This approach is also known as Prioritization

of Requirements for Test (PORT). The PORT

algorithm uses four factors for prioritizing test

cases including requirements, execution

complexity, fault rate for requirements, and client

priority. This approach uses the value factor and

weight factor for computing prioritization factor

value (PFV) for all requirements. The fault

detection rate is improved in this approach.

Walcott et al. [8] proposed a time-aware based

approach for prioritizing test cases using two

criteria of execution time and code coverage (block

coverage and method). A genetic algorithm is used

in this approach for prioritizing regression test

suites according to these two criteria. Test case

tuples are first selected according to their execution

time.

These tuples are then used as the primary

population for the genetic algorithm. Fitness of

these tuples are evaluated according to code

coverage. In experiments regarding this approach,

the GradeBook and Jdepend applications were used

both of which show faults. After these experiments,

it was observed that time-aware prioritization used

in this approach performed better than other

prioritization techniques.

Researchers in [9] proposed a hybrid approach

based on a particle swarm optimization algorithm

in order to prioritize test cases in embedded real-

time systems. The proposed method is based on

three criteria including function, statement, and

branch. The proposed algorithm can perform the

best search for test cases in order to prioritize

modified software components. It can also find test

cases with the highest coverage. Experiments have

been performed on 20 test cases from the Junit test

suite.

Test case prioritization using multi-objective

fitness function was proposed by Amr Abdel Fatah

Ahmed et al. in [10]. This approach uses various

control-flow coverage criteria for prioritization.

The disadvantage of the proposed method is that it

does not consider whether it affects regression test

performance in computing execution cost and time

for test cases.

N.Prakash and T.R.Rangaswamy in [11] proposed

a modular-based multiple test case prioritization

technique. The program is divided into multiple

modules, and the number of test cases are

prioritized according to each module. In the second

stage, the prioritized test sets for a single module

are combined and prioritized for the whole

program. Each module is created by a number of

test cases and test case fault coverage. The

performance of the proposed method is better than

the greedy algorithm and redundant greedy

algorithm methods. However, it is less than the

genetic algorithm approach. This prioritization

approach considers only the fault coverage criteria

and neglects other indexes such as code coverage,

cost, time, etc.

Mahfuzul Islam et al. in [12] proposed a multi-

objective test case prioritization approach based on

latent semantic indexing. Latent semantic indexing

is the method of information retrieval (IR). This

proposed technique counts code coverage, software

requirements, and executional costs for test cases.

IR-based traceability recovery approach is applied

to bind software artifacts (such as requirement

specification) to the code. The test case

arrangement is defined using multi-purpose

optimization and performed using NSGA-II (Non-

dominated Sorting Genetic Algorithm II)

algorithm. This approach has been evaluated using

two small java software applications.

Sudhir and Srinivas in [13] worked on an

evolutionary search algorithm for test case

prioritization. The proposed algorithm operates

based on test time and code coverage information

B.A. Khasragi / International Journal of Academic Research in Computer Engineering

28

in order to arrange test suites using a genetic

algorithm. The test cases of the proposed technique

are generated using a genetic algorithm and

consumes less time compared to test cases

generated using random and optimal prioritization

techniques. This technique can detect the

maximum number of faults in a limited executional

time. The fitness function for this algorithm is

complicated.

Wang and Zeng in [14] presented a multi-criteria

dynamic test case prioritization approach. Test case

prioritization values are computed independently

according to five criteria: coverage, potential

probability of fault exposure, requirements,

historical information, and execution time. The

total weight of optimal results is also measured in

the proposed method. The test set computed based

on value is then arranged by total weight. This

approach has been investigated in small test case

samples. The proposed method is quite complex

consuming a large amount of time for test case

prioritization.

Manika and Malhotra in [15] presented a novel

method for test case prioritization using MOPSO

(Multi-Objective Particle Swarm Optimization).

The proposed method uses maximum fault

coverage and minimum execution time for test case

prioritization. This algorithm uses a three-stage

approach for test case prioritization. The first stage

consists of removing abundant test cases. The

second stage applies the multi-objective particle

swarm optimization algorithm for selecting test

cases from a test set according to both fault

coverage and execution time objective functions.

The third is when test case prioritization takes place

and test cases from the second stage are prioritized.

The multi-objective particle swarm optimization

approach performs better than other approaches

such as the non-sorting, reverse sorting, and

random sorting techniques.

A multi-objective test case prioritization technique

using genetic algorithm was proposed by

Mitrabinda Ray et al. in [16]. The proposed

approach prioritizes components based on their

effect on reliability of the system being tested and

then applies a test case selection method for

selecting a constant number of test cases from

storage. The test case selection approach is in fact

a multi-purpose optimization problem used for

minimizing deviance maximizing test suite

qualification for selecting test cases. The

performance of this approach was estimated using

simulated experiments.

N. Prakash and K. Gomathi [17] proposed a test

case prioritization approach using more than one

criterion such as code coverage, branch coverage,

function coverage, path coverage, and fault

coverage. Coverage information is collected and

analyzed both manually and automatically.

According to coverage information, multiple

coverage criteria are used for test case

prioritization. Experimental results of this

approach have been reviewed by three standard

programs and were compared with other existing

prioritization approaches. Comparison results

show that the proposed method improves

regression test performance.

Manika and Malhotra in [18] presented a

regression test case prioritization method based on

three factors: Rate of Fault Detection (RFT),

Percentage of Fault Detection (PFD), and Risk

Detection Ability (RDA). RFT is defined as the

average number of defects found per minute by

each test case. PFD is the percentage of faults

detected by each test case over all faults. RDA is

defined as the ability to detect severe faults per unit

time. For each test case, these three factors have all

been computed. Test cases are then sorted in

descending order according to computed values.

This multi-objective approach performs better than

other approaches including non-sorting, reverse-

sorting, and random sorting techniques.

Saini and Tyagi in [19] proposed a multi-objective

test case prioritization algorithm (MTCPA) which

is based on two objective functions. The objective

functions include statement coverage and test case

execution time using genetic algorithm. The

proposed method has been compared with different

prioritization techniques in order to find the

optimal solution. Experimental results have shown

that the proposed algorithm returns a test case suite

with maximum fault coverage and minimum

execution time with maximum APFD criteria as the

solution.

The proposed multi-objective test case

prioritization techniques are shown in Table 1.

B.A. Khasragi / International Journal of Academic Research in Computer Engineering

29

Table 1. Multi-Objective Test Case Prioritization

Techniques

Approaches Metrics Objectives Authors

Greedy APFDc

Statement coverage,

Test cost and Fault
severity

S. Elbaum,

et.al.[6]

Value-driven

approach

TSFD,

ASFD

Requirements,

execution Complexity,

Fault rate for
requirements, Client

priority

Hema

Srikanth,
et.al.[7]

Time-aware
based

approach,

Genetic
Algorithm

APFD

Execution time, Code

coverage (Block

coverage and Method)

K.R Walcott,
et.al. [8]

PSO APFD

Statement coverage,

Branch coverage,

Function coverage

Khin Haymar

Saw Hla, et.al.

[9]

Genetic
Algorithm

APFD

Control-flow coverage,

Statement coverage,

Fault severity

Amr Abdel

Fatah Ahmed

et.al.[10]

Modular
based

APFD Fault coverage
N. Prakash, T.R.

Rangaswam[11]

Genetic

Algorithm
APFD

Code coverage,

software
Requirements, ,

Executional costs for

test cases

M.M.Islam

et.al. [12]

Genetic

Algorithm

APFD

Code coverage,

Execution time

Sudhir Kumar,

et.al. [13]

Optimized

results
APBC

Coverage, potential,

Probability of fault
exposure,

Requirements,

Historical information,

Execution time

Xiaolin Wang,

Hongwei
Zeng[14]

Multi

objective
PSO

APFD

Maximum fault

coverage, Minimum
execution time

Manika Tyagi

and Sona
Malhotra[15]

Genetic
Algorithm

No
metric

Reliability of the

system being tested,

Minimizing deviance
maximizing test suite

qualification for

selecting test cases

Mitrabinda
Ray, et.al. [16]

Optimized

results

No

metric

Code coverage, branch

coverage, Function

coverage, Path
coverage, Fault

coverage

N.Prakash
and

K.Gomathi

[17]

Optimized

results
APFD

Rate of Fault
Detection (RFT),

Percentage of Fault

Detection (PFD), Risk
Detection Ability

(RDA)

Manika
Tyagi, Sona

Malhotra [18]

Genetic

Algorithm

APFD

Statement

coverage, Execution
time

Anita Saini

and Sanjay
Tyagi[19]

3. Comparison of Single-Criteria and Multi-

Criteria

Many prioritization techniques focus on one

objective such as coverage or fault detection rate

for prioritization. Recently, researchers have

created hybrid criteria (also multi criteria, multi-

objective techniques, and breaking ties). Most of

these researches believe that fault detection is a

complicated procedure, and using a unit criteria can

significantly limit the ability of regression test in

detecting defects.

The main idea of hybrid criteria is that they are

comprised of multiple criteria and use the

advantages of individual criteria in making

decisions about selecting the next test case in a

prioritization problem. A hybrid criterion may be

comprised of multiple single criteria (namely

primary criteria, secondary criteria, etc.) and are

prioritized using the primary criteria. The

secondary criterion is only used when test cases in

the primary criterion are tied (for example they

estimate the primary criterion).

Another reason for using hybrid criterion is that

single criterion can transform into unit criterion.

For example, let us assume that test cases are

prioritized using total coverage for statements and

branches (the most significant test cases covering

the most statements and branches). Therefore, a

hybrid method is needed to apply all criteria

simultaneously. Multiple criteria have the potential

to improve the effect of regression testing than

techniques using single criterion.

The following example is used to define the

concepts of single and multiple criteria

prioritization. The test set is comprised of five test

cases, each of which is a series of criteria such as

events, statements, branches, executional time, and

relative faults. Table 2 shows each of these test

cases. 0 indicates criteria coverage and 1 indicates

no coverage of criteria.

Single criteria prioritization can now be defined

considering test cases shown in the table above. Let

us assume that we want to prioritize five test cases

using a redundant statement coverage prioritization

approach [2]. This approach is as so: test cases with

the highest statement coverage are selected first.

The statements covered by test cases are then

identified. Coverage information in all remaining

test cases is configured so that statements not yet

covered can be identified, and the process is

repeated until all statements are covered by at least

one test case.

When multiple test cases cover a common

statement, one test case is randomly selected for

that statement. According to this definition, the T1

test case in Table (2) is selected first. This test case

covers four statements. This test case is placed

within the prioritization test suite. After this test

case, the test case with a higher coverage degree

and covering statements not yet covered is selected.

According to these conditions, test cases T2 and T4

are selected in the next iteration. The reason why

T3 was not selected is that it covers statements

B.A. Khasragi / International Journal of Academic Research in Computer Engineering

30

previously covered by test case T1. Test cases T2

and T4 both have the same conditions; therefore,

one of them is selected randomly (T4 in this case).

This test case is placed in the prioritization test

suite. With this test case, all statements are

covered, and therefore, the algorithm terminates.

The prioritization test suite includes {T1, T4}, and

remaining test cases are added to the suite in an

ordered fashion. The final suite for prioritization is

{ T1, T4, T2, T3, T5}.

The same example will now be explained for multi-

objective prioritization. The algorithm is the same

algorithm as before and statement, and event

coverage are selected as the primary and secondary

criteria, respectively. After executing the

algorithm, the T1 test case is selected first based on

primary criteria. In the next iteration, the T2 and T4

test cases are selected. According to the primary

criterion, a tie occurs between these two test cases

and the secondary criterion is applied. According

to the secondary criterion, test case T2 is selected

since it covers event e1 whereas the T4 test case

does not cover e1. The prioritization test suite now

contains {T1, T2}.

Table 2. Test Cases With and Without Relative Criteria Coverage

Test

Cases

Events Statements Branches
Executional

Time
Faults

e1 e2 e3 s1 s2 s3 s4 s5 b1 b2 Exec (sec.) f1 f2 f3 f4 f5

T1 0 1 1 1 0 1 1 1 0 0 0.5s 0 0 1 0 1

T2 1 0 1 0 1 0 1 0 0 0 0.4s 0 1 0 1 0

T3 1 1 0 1 0 1 0 1 1 1 0.8s 1 0 1 0 0

T4 0 0 1 0 1 0 1 0 1 0 0.3s 0 1 0 0 0

T5 1 1 0 1 0 0 0 0 0 1 0.9s 0 0 0 0 0

In the next iteration, no test case is selected

according to the primary criterion since all

statements have been covered and the algorithm is

called using the secondary criterion and once again

no test case is selected since all events are covered

by the T1 and T2 test cases. Remaining test cases

are added to the suite in an ordered fashion, and the

final test suite for prioritization includes {T1, T2,

T3, T4, T5}.

As can be seen in the two examples above, the

hybrid approach achieves a desirable coverage in

program code. In the first example, the algorithm

randomly selected a test case when two test cases

were tied and therefore, the test case covering more

statements than the test case selected may be

removed, and the desirable code coverage may not

be achieved and fault detection may not be

improved as much.

In order to increase the effect of fault detection,

another example will be examined according to

figure 1. This example contains a program with 14

lines of code and 5 test cases. According to the

table in Figure 1, the branches (if and else) of a

program that are covered by test cases have also

been shown.

1: Read (a,b,c,d); B1:If(a>0)

2: X=0;

3: else

4: X=5;

5: end if

6: if (b>0)

7: end if

B3: if(c>0)

B4: if(d>0)

8: output(x);

9: else

10: output(10);

11: end if

12: else

13: output(1/(y-6));

14: end if

Test Case:

T1: (a=1,b=1,c=-1,d=0)

T2: (a= -1,b= -1,c=-1,d= -1)

T3: (a= -1,b=1,c=-1,d=0)

T4: (a= -1,b=1,c=-1,d=0)

T5: (a= -1,b= -1,c=-1,d=0)

Figure 1. Sample Program with Relative Test Cases

Table 3. Test Cases That Relative with Sample Program

Test

Case

BT
1
 BF

1 BT
2 BF

2 BT
3 BF

3 BT
4 BF

4

T1 x x x

T2 x x x x

T3 x x x

T4 x x x x

T5 x x x x

 The objective is to create a minimized test suite

using the HGS test suite minimization algorithm

[20] using only one criterion and the data shown in

table 3. Initially, since both 𝐵1
𝑇 and 𝐵4

𝐹 branches are

only covered by the T1 and T2 test cases, these two

test cases are added to the minimum suite. Then, all

B.A. Khasragi / International Journal of Academic Research in Computer Engineering

31

branches covered by these two test cases are

marked. Test case T3 is redundant since it covers

branches previously covered by the T1 and T2 test

cases. Therefore, it is removed. In the next step, the

𝐵4
𝑇 branch remains uncovered. The remaining T5

and T4 test cases cover this branch. The T4 test case

is selected randomly. The minimum test suite

includes {T1, T2, T4}, and all branches are covered

by this suite. If we look closely at Figure 1, it can

be seen that test case T3 that detects the divide by

zero fault (line 13) is not included in the minimum

suite. Therefore, the effect of fault detection will

decrease in the minimum test suite. This problem

can be overcome by expanding this algorithm using

a different criterion. It is clearly seen that hybrid

algorithms perform better than single criterion

algorithms and can detect more faults.

4. Conclusion

Regression testing is applied to modified

components of software. Regression testing reruns

all previous tests successfully executed by the

software in order to ensure that the software has not

randomly failed in previous operations. Different

techniques are used for reducing regression test

complexity amongst which is the test case

prioritization technique. Test case prioritization is

an approach for regulating test cases in order to

minimize time consumption, costs, and efforts, and

to increase fault detection rate. The regression test

and different activities in a test were initially

explained in this article. Different test case

prioritization techniques were then reviewed.

Finally, it was observed that multiple criteria-based

prioritization techniques have the potential to

improve the effect of regression testing techniques

than single criterion-based approaches.

References

[1] S. Elbaum, P. Kallakuri, A.G. Malishevsky, G.

Rothermel, S. Kanduri, Understanding the Effects

of Changes on the Cost-Effectiveness of

Regression Testing Techniques, Journal of

Software Testing, Verification, and Reliability, pp.

65-83, 2003.

[2] G. Rothermel, R.J. Untch, C. Chu, Prioritizing

Test Cases for Regression Testing, IEEE

Transactions on Software Engineering, pp. 929-

948, 2001.

[3] S. Yoo, M. Harman, Regression Testing

Minimization, Selection and Prioritization: A

Survey, Software Testing, Verification and

Reliability, Vol. 22, No. 2,

pp. 67-120, 2010.

[4] W.E. Wong, J.P. Horgan, S. Londonm, H.

Agrawal, A Study of Effective Regression Testing

in Practice, 8th International Symposium on

Software Reliability Engineering, pp.230–238,

1997.

[5] G. Rothermel and S. Elbaum, Putting Your Best

Tests Forward, IEEE Software, Report, pp.22-25,

2003.

[6] S. Elbaum, A. Malishevsky G. Rothermel,

Incorporating Varying Test Costs and Fault

Severities into Test Case Prioritization, 23rd

International Conference Software Engineering,

pp. 329-338, 2001.

[7] H. Srikanth, L. Williams, J. Osborne, System Test

Case Prioritization of New and Regression Test

Cases, 4th International Symposium on Empirical

Software Engineering, pp.62-71, 2005.

[8] K.R. Walcott, M.L Soffa, G.M. Kapfhammer, R.

Roos, Time-Aware Test Suite Prioritization,

Software Testing and Analysis, pp.1-12, 2006.

[9] K.H.S, Hla, Y. Choi, J.S. Parl, Applying Particle

Swarm Optimization to Prioritizing Test Cases for

Embedded Real Time Software Retesting, Eighth

IEEE international conference Computer and

Information Technology Workshops, pp.527-532,

2008.

[10] A.A.F. Ahmed, M. Shaheen, E. Kosba, Software

Testing Suite Prioritization Using Multicriteria

Fitness Function, IEEE ICCTA, pp.160-166,

2012.

[11] N. Prakash, T.R. Rangaswamy, Modular Based

Multiple Test Case Prioritization, IEEE

International Conference on Computational

Intelligence and Computing Research, pp.1-7,

2012.

[12] M.M. Islam, A. Marchetto, A., Susi,G. Scanniello,

A Multi Objective Technique to Prioritize Test

Cases Based on Latent Semantic Indexing, 16th

European Conference Software Maintenance and

Reengineering, pp.21-30, 2012.

[13] S.K. Mohapatra, S., Prasad, Evolutionary Search

Algorithm for Test Case Prioritization, IEEE

ICMIRA, pp.115-119, 2013.

[14] X. Wang, H., Zeng, Dynamic test case

prioritization based on Multi-Objective, 15th

IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing (SNPD),

pp.1-6, 2014.

B.A. Khasragi / International Journal of Academic Research in Computer Engineering

32

[15] M. Tyagi, S., Malhotra, Test Case Prioritization

using Multi Objective Particle Swarm Optimizer,

IEEE International Conference on Signal

Propagation and Computer Technology

(ICSPCT), pp.390-395, 2014.

[16] M. Ray, D.P. Mohapatra, Multi-objective test

prioritization via a genetic algorithm, Innovations

System Software Engineering Springer, pp.261-

270, 2014.

[17] N. Prakash, K., Gomathi, Improving Test

Efficiency through Multiple Criteria Coverage

Based Test Case Prioritization, International

Journal of Scientific & Engineering Research, Vol.

5, No. 4,pp.420-424, 2014.

[18] M. Tyagi, S. Malhotra, An Approach for Test Case

Prioritization Based on Three Factors, MECS I.J.

Information Technology and Computer Science,

pp.79-86, 2015.

[19] A.Saini, S. Tyagi, MTCPA: Multi-Objective Test

Case Prioritization Algorithm Using Genetic

Algorithm, International Journal of Advanced

Research in Computer Science and Software

Engineering, Vol. 10, No.4, pp. 261–270, 2015.

[20] Harrold, M.J., Gupta, R., Soffa, M.L., A

Methodology for Controlling the Size of a Test

Suite, ACM Transactions on Software

Engineering and Methodology, pp.270-285, 1993.

